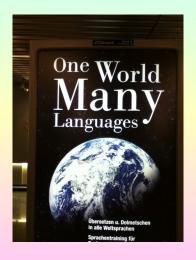
# The analysis by synthesis of speech prosody.


Speech Lunch, Phonetics Laboratory University of Oxford

#### Daniel Hirst

Laboratoire Parole et Langage, CNRS and Université de Provence daniel.hirst@lpl-aix.fr

2011-10-14

#### The curse of Babel?



#### The curse of Babel

- ► The language barrier is perhaps the greatest social problem facing modern multicultural societies like Europe.
- Language is not just words non-verbal information is (at least) just as important.
- ► This is an area where we need speech technology.
- ► Speech technology for non-verbal information is in its infancy.

# What is missing?



Figure: Why can't we use these to speak to people in other languages?

### What have we already got?

- ► Speech recognition (Dragon dictate, Google translate)
- ► Translation (Babelfish, Google translate)
- ► Speech synthesis (Acapela, Google translate)

### What have we already got?

- ► Speech recognition (Dragon dictate, Google translate)
- ► Translation (Babelfish, Google translate)
- Speech synthesis (Acapela, Google translate)



Figure: My hovercraft is full of eels!

## Speech technology

- current disparity in resources
- ► small minority of languages acceptable (?)
- vast majority of languages primitive
- transfer of ressources?

### Speech technology resources

- often language specific
- difficult to generalise to:
- under-ressourced languages
- different dialects
- different speaking styles
- speech prosody

### Annotation of speech prosody

The annotation/representation of prosody is crucial for

- ▶ intelligibility "He's not coming back"
- statement? question? order?
- speaker states "Isn't this interesting"
- naturalness
  - facilitate cognitive processing
  - cf non-standard, non-native, pathological, or synthetic speech
- limited current use of synthesis for listening tasks but huge potential

### Annotation of speech prosody

#### Current prosodic annotation is too language / theory specific

- cross-language annotation
  - ► INTSINT (Hirst & Di Cristo 1998)
  - ► ToBI (Jun 2005)
- interaction between linguists and engineers
- Biannual Speech Prosody Conferences
- 6th International Speech Prosody Conference, (May 2012 - Shanghai)

► most prosodic annotation systems don't distinguish

- most prosodic annotation systems don't distinguish
- ► ToBI: H\* L%

- most prosodic annotation systems don't distinguish
- ► ToBI: H\* L%
  - ► function (\* %)

- most prosodic annotation systems don't distinguish
- ► ToBI: H\* L%
  - ▶ function (\* %)
  - ► form (HL)

- most prosodic annotation systems don't distinguish
- ► ToBI: H\* L%
  - ▶ function (\* %)
  - ▶ form (HL)
- ► Inter-transcriber agreement (Wightman 2002 "ToBI or not ToBI")

- most prosodic annotation systems don't distinguish
- ► ToBI: H\* L%
  - ▶ function (\* %)
  - ▶ form (HL)
- ► Inter-transcriber agreement (Wightman 2002 "ToBI or not ToBI")
  - ▶ functions good

- most prosodic annotation systems don't distinguish
- ► ToBI: H\* L%
  - ▶ function (\* %)
  - ▶ form (HL)
- ► Inter-transcriber agreement (Wightman 2002 "ToBI or not ToBI")
  - functions good
  - ► forms bad

- most prosodic annotation systems don't distinguish
- ► ToBI: H\* L%
  - ▶ function (\* %)
  - ▶ form (HL)
- ► Inter-transcriber agreement (Wightman 2002 "ToBI or not ToBI")
  - functions good
  - forms bad
- ► Automatic recognition the opposite

► Momel/INTSINT

- Momel/INTSINT
- ► Automatic reversible annotation with Momel

- Momel/INTSINT
- ▶ Automatic reversible annotation with Momel
- ► Momel factors raw F0 into

- Momel/INTSINT
- ▶ Automatic reversible annotation with Momel
- Momel factors raw F0 into
- macroprosodic component (independent of segmental material)

- Momel/INTSINT
- ▶ Automatic reversible annotation with Momel
- Momel factors raw F0 into
- macroprosodic component (independent of segmental material)
- microprosodic component (independent of intonation)

### Momel

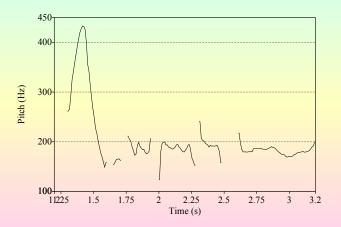



Figure: Momel

### Momel

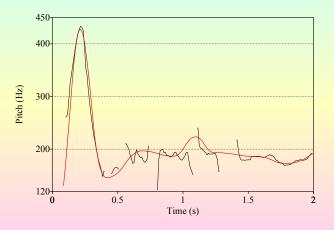
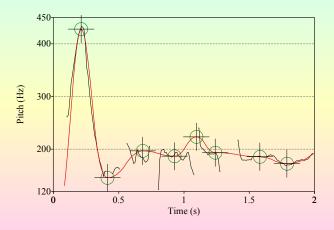
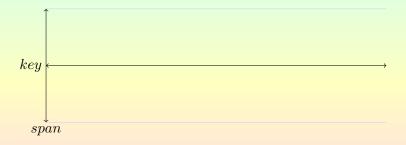
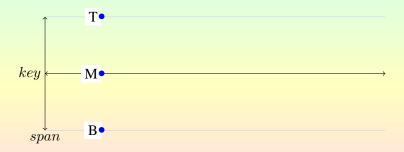


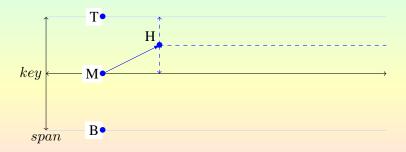

Figure: Momel

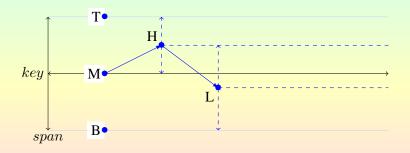
#### Momel

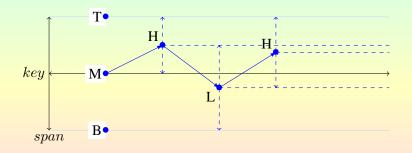


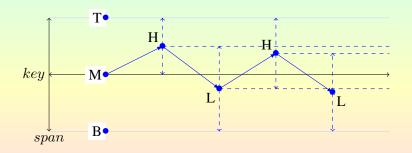


Figure: Momel

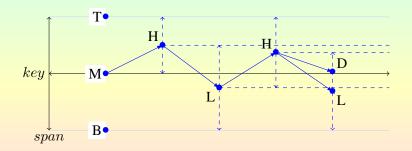

# Surface Phonological Representation


► INTSINT designed as tool for linguists for the symbolic coding of intonation patterns. (Hirst & Di Cristo (eds) 1998)


# Surface Phonological Representation


- ► INTSINT designed as tool for linguists for the symbolic coding of intonation patterns. (Hirst & Di Cristo (eds) 1998)
- Momel and INTSINT are both now implemented as plugin for Praat














#### Prosodic function

- ▶ IF annotation (Hirst 1977, 2005)
- 4 degrees of prominence unaccented, accented, nuclear, emphatic
- ▶ 3 degrees of boundary none, non-terminal, terminal
- label a large and sufficiently representative corpus: in terms of the higher-level factors that govern phonemic, phrasal, prosodic, speech-act etc. variation. (Campbell 1995)

# Bootstrapping automatic prosodic functional annotation

- ► Hand-labelled data on small corpus
- ▶ Predict functional annotation from acoustic data
- ► Train synthesiser with larger corpus of annotated data

# Application to TTS in Finnish

Vainio, Hirst, Suni & De Looze (in Proc. SpeCom 2009)

- HMM based system
- symbolic input sequence of phone-sized HMM units
- prosodic parameters: F0, duration, glottal flow
- training data not labelled for prosodic form
- ▶ iterative procedure: train on functional annotation
- predict prosodic tags from hand-labelled corpus

# Application to synthesis of French

- ► Read speech: corpus Eurom1 (-> Multext Prosody):
- ► 40 continuous passages of 5 sentences each.
- ▶ Spontaneous speech: corpus CID (Bertrand et al. 2008):
- interactive dialogue: 8 one-hour dialogues.
- ► Each dialogue about 20 minutes for each speaker.
- ► Treat each speech style as different language

# So no future for explicit models of prosodic form?

- not for labelling but for evaluation
- analysis by synthesis
- ► Hirst, D.J. 2011. The analysis by synthesis of speech melody: from data to models. Journal of Speech Sciences 1 (1), 55-83. http://http://www.journalofspeechsciences.org

simple representation

complicated data

predicted data

Figure: The Analysis by Synthesis paradigm

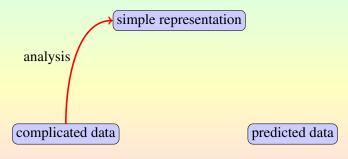



Figure: The Analysis by Synthesis paradigm

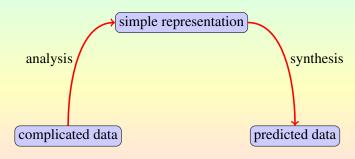



Figure: The Analysis by Synthesis paradigm

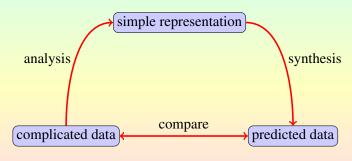



Figure: The Analysis by Synthesis paradigm

#### What is science?



Figure: Jean Baptiste Perrin (1870-1942).

#### What is science?



Figure: Jean Baptiste Perrin (1870-1942).

scientific method: explain visible complexity
by invisible simplicity.

(expliquer le visible compliqué par l'invisible simple.)